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As is well known, most gas-fluidized beds of solid particles bubble; that is, they are 
traversed by rising regions containing few particles. Most liquid-fluidized beds, on the 
other hand, do not. The aim of the present paper is to investigate whether this 
distinction can be accounted for by certain equations of motion which have commonly 
been used to describe both types of bed. For the particular case of a bed of 200 pm 
diameter glass beads fluidized by air at ambient conditions it is demonstrated, by direct 
numerical integration, that small perturbations of the uniform bed grow into structures 
resembling the bubbles observed in practice. When analogous computations are 
performed for a water-fluidized bed of 1 mm diameter glass beads, using the same 
equations, with parameters modified only to account for the greater density and 
viscosity of water and to secure the same bed expansion at minimum fluidization, it is 
found that bubble-like structures cannot be grown. The reasons for this difference in 
behaviour are discussed. 

1. Introduction 
As soon as fluidized beds of solid particles began to be used technically it was 

observed that, on the whole, liquid-fluidized beds present a smooth appearance and 
expand progressively as the flow rate of fluid is increased, while gas-fluidized beds are 
traversed by rising pockets of gas which can be seen to burst through the surface, giving 
the bed the appearance of a boiling liquid. The terms ‘particulate’ and ‘aggregative’ 
were introduced to distinguish these types of behaviour, and a criterion to distinguish 
between them was proposed by Wilhelm & Kwauk (1948), who suggested that the bed 
behaves aggregatively if Fr = uk/gd, > 1, where u, denotes the minimum fluidization 
velocity and d, is the particle diameter. This criterion is purely empirical but some 
theoretical justification for its use was provided much later by a linear stability analysis 
of the ideal uniform fluidized state by one of the present writers (Jackson 1963~).  This 
was based on continuity equations, and momentum equations of speculative form, and 
it predicted that all such beds should be unstable, with the dominant instability taking 
the form of plane waves with horizontal wavefronts rising through the bed. However, 
the rate of growth of these waves is found to be much larger in gas-fluidized beds than 
in beds of comparable particles fluidized by liquid so, in this sense, the former are much 
less stable than the latter. If one associates the instability with a tendency to form 
bubbles this suggests, though it certainly does not prove, that visible bubbles may be 
present in one case, but not the other. 

This early analysis had the unsatisfactory feature of predicting that the rate of 
growth of the instabilities increases without bound as their wavelength tends to zero, 
which is clearly a consequence of omitting from the equations any terms representing 
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‘viscous dissipation’. When such terms are introduced (Pigford & Baron 1965; 
Anderson & Jackson 1967, 1968) it is found that there is a dominant wavelength, for 
which the amplification rate is largest, but the bed always remains unstable unless an 
additional term, with the form of a pressure associated with the particle phase, is 
introduced. If this term increases sufficiently rapidly with increase in the concentration 
of particles, the bed may be stabilized (Garg & Pritchett 1975), so it seems possible that 
a stability criterion might serve to distinguish between aggregative and particulate 
behaviour. However, experiments (Anderson & Jackson 1969; El-Kaissy & Homsy 
1976) show that liquid-fluidized beds of small glass beads, which are typically 
‘particulate’ in behaviour, are not uniform and stable but are traversed by slowly 
developing rising waves closely resembling, in their initial stages of growth, the 
instability waves just described. A theoretical prediction of stability in these cases 
would, therefore, be unwelcome. Certain gas-fluidized beds of small particles, such as 
the fluid cracking catalyst used in oil refining (mean diameter approximately 60 pm), 
expand without bubbling or visible disturbance of any kind for some distance beyond 
the point of minimum fluidization, and there have been attempts to explain this in 
terms of the above stabilizing mechanism (Foscolo & Gibilaro 1984; Batchelor 1988). 
However, there is now compelling evidence that these expanded beds can bear limited 
stress without yielding (Mutsers & Rietema 1977; Tsinontides & Jackson 1993), and 
that it is the existence of this yield stress which is responsible for their stability. 

The linear one-dimensional stability analyses just described serve to explain the 
existence of slowly growing waves in liquid-fluidized beds, and also why comparable 
waves in gas-fluidized beds grow much faster, but they have nothing to say about their 
ultimate fate and cannot explain why the waves in liquid-fluidized beds do not develop 
into bubbles, or whether the more unstable waves in gas-fluidized beds are, indeed, the 
precursors of bubbles. Over the intervening years there have been a number of attempts 
to extend the one-dimensional stability theory to take account of the nonlinearity of 
the equations of motion (Fanucci, Ness & Yen 1979; Liu 1982, 1983; Needham & 
Merkin 1983, 1986; Ganser & Drew 1990), but these have failed to show any 
qualitative distinction between the predicted behaviour of gas- and liquid-fluidized 
beds, and recent bifurcation analyses, again confined to one-dimensional motions 
(Dankworth & Sundaresan 1991; Goz 1992), also show no significant differences 
between the two cases. Secondary, two-dimensional instabilities of the one-dimensional 
wave pattern have been observed experimentally in water-fluidized beds (Didwania & 
Homsy 1981) and investigated theoretically by the same authors (Didwania & Homsy 
1982) and by Needham & Merkin (1984), Batchelor & Nitsche (1991) and Batchelor 
(1993). These appear to play a role in a process that may lead to bubbles, but again the 
stability analyses are not able to predict the distinction in behaviour between gas- and 
liquid-fluidized beds. Thus, more than thirty years after linear stability analysis of 
proposed equations of motion revealed why ideal uniform fluidized beds are not 
generally observed, we still do not know whether these equations contain the physics 
needed to explain the spontaneous generation of bubbles, and to distinguish bubbling 
from non-bubbling systems. 

By direct numerical integration of the equations of motion which had served as a 
basis for the stability analyses, propagating, bubble-like structures in fluidized beds 
were found as early as the 1970s (Pritchett, Blake & Garg 1978) and quite extensive 
comparisons of observed and computer-generated bubbles have been reported more 
recently (see, for example, Gidaspow, Syamlal & Seo 1986; Syamlal & O’Brien 1989; 
Kuipers 1990). However, of these only Syamlal & O’Brien reported any spontaneous 
bubble formation within a uniformly fluidized bed ; otherwise the solutions represent 
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bubbles injected into the bed, or formed from a gas jet at the level of the distributor. 
We are not aware of any comparable computations for liquid-fluidized beds to resolve 
the observed differences between gas and liquid fluidization. 

In this paper we will attack the problem of growing disturbances directly, by 
numerical integration of the equations of motion from given initial conditions. In 
principle, this would allow us to explore all aspects of the dynamical behaviour of 
fluidized beds, and how they depend on the form of the postulated equations of motion 
and the values of parameters in these equations. Howevever, our objective here is quite 
limited. We confine attention to just two unperturbed fluidized beds of hard 
monodisperse spherical particles : one bed typical of those gas-fluidized systems which 
are observed to bubble immediately the gas velocity exceeds that needed for minimum 
fluidization, and the other typical of liquid fluidized beds in which bubbles are not seen. 
A form of the equations of motion which has been used extensively in the literature 
referred to above (though never justified a priori) is adopted for both cases. The two 
beds are distinguished in the equations only by taking different values for obviously 
different physical properties, such as the particle diameter, the densities of the two 
materials and the viscosity of the fluid phase, and hence for quantities dependent on 
these, such as the terminal velocity of fall of an isolated particle. Since both gas- and 
liquid-fluidized beds of hard spheres have essentially the same volume fraction of solids 
at minimum fluidization, and minimum fluidization also marks the onset of instability, 
one other parameter in the equations is adjusted to make the volume fractions match 
for the two beds at their stability limits. It is then shown that small initial disturbances 
will grow into structures recognizably identifiable with bubbles when the gas-fluidized 
bed is expanded just beyond its stability limit, but this does not happen in the liquid- 
fluidized bed. On the basis of just two calculations it is not possible to draw conclusions 
of any generality about the factors which determine whether bubbles will form, but the 
solutions give some hint of the mechanical origin of the difference in behaviour. 

2. Equations of motion 
Equations of motion relate averaged velocities, concentrations, etc. of the two 

phases. Of course, in general there is no guarantee of the existence of closed relations 
between the averaged variables, but we assume that closure is possible for the problems 
of interest here. The variables in question may be defined as local time or spatial 
averages for the system of interest, or as averages over an ensemble of macroscopically 
equivalent systems. There is now an extensive and varied literature on the averaging 
process; see, for example, Anderson & Jackson (1967), Drew (1971), Drew & Segel 
(197 l), Hinch (1 977), Nigmatulin (1979), Joseph & Lundgren (1990), and Zhang & 
Prosperetti (1994). 

The equations used here are those proposed by Anderson & Jackson (1967) and 
subsequently used in a number of the stability studies referred to above. They have the 
following form : 

%+V.($hv) = 0, 
a t  
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and D f u  = - v . E , - F + p , g ,  
P f  Dt (4) 

where (1) and (2) are continuity equations for the particles and the fluid, while (3) and 
(4) represent momentum balances for the two phases. q5 is the volume fraction of solids, 
p f  and p, are the densities of the fluid and solid materials, u and u are their local average 
velocities, g is the specific gravity force vector, F is  the drag force, per unit bed volume, 
between the two phases, and Ef and E, are stress tensors associated with the separate 
momentum balances The symbols D,/Dt and D,/Dt denote material time derivatives 
based on the velocities u and u, respectively. 

Empirical closure expressions for the drag force are available, but the two stress 
tensors are not known with any certainty. Here we adopt the simplest physically 
credible expression for each term, since part of our purpose is to see whether equations 
of motion of simple form can account for the distinction between bubbling and non- 
bubbling systems. Thus we take 

F = P(u - u),  

E, = p , / - p s  [VU + VuT -$(V* v ) / ] ,  

Ef = p f / - , t ~ f  [VU i VuT - g(V* U )  /] ; 

( 5 )  

(6)  

(7) 

( 5 )  then represents a drag force proportional to the difference between the local average 
velocities and the factor /3 would be expected to depend on 4. For this we adopt the 
following form, corresponding to the well-known Richardson-Zaki (1 954) correlation 
for sedimentation velocity: 

where n depends on the Reynolds number for an isolated particle falling at its terminal 
velocity vt. p f  and pf are taken to be the local average value of the fluid pressure and 
the viscosity of the pure fluid, respectively, while p ,  and ,us are assumed to be monotone 
increasing functions of Q which vanish when q5 = 0 and increase without bound as 
q5+Qp, where q5p is the volume fraction of solids at random close packing of the 
particles. It can be argued that p ,  should depend additionally on the relative velocity 
Ju--1, or that p s  and ,us should depend additionally on the ‘particle temperature’, or 
mean square value of the fluctuation of particle velocities about the local average. 
However, a dependence on Q alone, of the nature specified above, is enough to account 
for a transition from unstable to stable behaviour as q5 is increased, and to establish a 
finite length scale for the dominant perturbation at each value of q5 for which the 
suspension is unstable. Various specific functional forms have been proposed; the ones 
adopted here are 

and 

Equation (9) is chosen to match an ad hoc form used by Hernandez & Jimenez (1991) 
in calculating bubble development; it contains two constants, P and r, which permit the 
magnitude and slope of p s ,  and hence the critical volume fraction for limiting stability, 
to be adjusted. The dependence of ,us on q5, given by (lo), has a behaviour similar to 
that of (9). The choice of a value for the parameter M permits the length scale of the 
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dominant instability to be adjusted. Expressions other than these have been proposed. 
For example, Harris & Crighton (1 994) use the simple form ps = P $ / ( $ p  - $), while B. 
Glasser (1994, personal communication) has investigated bifurcation properties of 
solutions using a constant value for ,us, in addition to other forms. 

If we had been interested only in gas-fluidized beds we could have gone further and 
introduced approximations associated with the smallness of the density and viscosity 
of a typical gas, when equations (3) and (4) above would reduce to 

P ( U - U )  = -vpf. (12) 
The tensor E, then represents momentum transfer by particle velocity fluctuations and 
forces transmitted between particles at points of direct contact, and the proper form for 
the equations is less uncertain. However, since we wish to simulate both gas- and 
liquid-fluidized suspensions, the more elaborate forms (3) and (4) should be retained. 

As remarked earlier, even these forms are oversimplified, sometimes by assumptions 
that could easily be improved. For example, the linear expression (5 )  for the 
dependence of drag force on the relative velocity of fluid and particles is appropriate 
only if the Reynolds number, based on this velocity and the particle diameter, is 
sufficiently small. In our solutions for the gas-fluidized bed this Reynolds number is 
typically of the order of unity, which is at the upper bound for the linear relation to 
be a reasonable approximation. In the solutions for the liquid-fluidized bed, on the 
other hand, Reynolds numbers a decimal order of magnitude larger than this are 
typical and the linear form should be replaced by something more elaborate. Though 
this could be done without difficulty, since empirical expressions for the drag force are 
available in this higher range of Reynolds numbers, we have chosen to retain the simple 
linear form appropriate for the gas-fluidized case. Anticipating our results, this allows 
us to show that the distinction between bubbling and non-bubbling behaviour is not 
a result of differing algebraic forms for the drag force in the two cases. Similar remarks 
apply to virtual mass effects. These are negligible for the gas-fluidized system, but 
might be expected to be significant for liquid fluidization. Nevertheless, even though we 
have omitted them in both cases, we are still able to account for the difference in 
behaviour. 

3. Method of solution 

infinite extent, namely 

$6 = $o; v = 0; u = iu, = iv,(l -$o)n--l ; VPf = [Ps$+P,(l-$)Ig, 

Equations (1)-(4) have trivial solutions representing uniform fluidized beds of 

where i is the unit vector in the upward vertical direction. When $o is smaller than 
some critical value these solutions are linearly unstable to small spatially periodic 
disturbances. The fastest growing disturbance is an upward travelling wave, of the 
form exp (cry t )  exp [i(ky - ui t)] ,  whose wavefronts are horizontal planes. The limiting 
value of $o for stability and the wavelength, growth rate, and velocity of propagation 
of the dominant wave, for any given value of $ < $o,  all depend on the parameters 
appearing in (3)-( 10). A non-zero value of P is needed if there are to be any conditions 
under which a uniform bed is stable, and a non-zero value of M is needed if there is 
to be a bounded value of the wavenumber for which the disturbance grows fastest, in 
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any given unstable bed. The linear stability theory of the unbounded uniform bed has 
been described exhaustively in the literature (Jackson 1963 a ;  Murray 1965; Pigford & 
Baron 1965; Anderson & Jackson 1968; Garg & Pritchett, 1975; Mutsers & Rietema 
1977; Liu 1982; Foscolo & Gibilaro 1984; Batchelor 1988), with much discussion of 
the physical origin of the stabilizing pressure term p s .  

In this work we shall avoid the computational complications which accompany a 
bounded bed by restricting attention to spatially periodic structures, and their growth 
and movement in time. However, we shall not limit considerations to small 
perturbations of a uniform state, but will generate the solutions by direct numerical 
integration of the full nonlinear equations of motion. The integration will always start 
from a small perturbation of a known steady state (for example, the uniform bed) so 
that the initial development of the disturbance away from the steady state can be 
predicted from the eigensolutions of the problem generated by linearization about the 
base state. When the base state is the uniform bed these can be found analytically; in 
other cases it will be necessary to compute them numerically. By starting in this way 
with the volume fraction and velocity fields in the correct relative phases, as determined 
from a linearized problem, we circumvent difficulties arising from stiffness introduced 
by the shortness of the typical relaxation time for the velocity difference u- u. 

To be specific, we seek solutions in a rectangular spatial domain of vertical height 
L, and horizontal width L,. The solutions will be constrained to be periodic with 
period L, in the y-direction (except for the pressure), and to be symmetric about the 
vertical median line (x = 0) and periodic with period L, in the x-direction. Explicitly, 
these conditions are 

y-periodicity : 

Q(xt 0) = $(x, L,); ~ ( x ,  0) = U(X, L,) ; U ( X ,  0) = U ( X ,  Ly) ; p(x, 0) = AX, L,) + Ap ; 
(13) 

symmetry and x-periodicity : 

Note that conditions (14) suppress any solutions in the form of oblique travelling 
waves. Because of symmetry about the median line the solution can be confined to the 
half-rectangle, and no conditions are needed at x = - L,/2. In (13) Ap denotes the 
change in pressure over the height of the rectangle. In the uniform base state, or in the 
presence of any fully developed travelling wave, this balances the weight of the material 
in the rectangle. In general, its value must be adjusted to ensure that the average 
vertical solids flux vanishes in the laboratory reference frame, thereby eliminating the 
inherent translational ambiguity of the problem. These boundary conditions 
automatically ensure that the total volume of each phase within the rectangle remains 
constant; in other words, the mean volume fraction of solids does not change with 
time. 

The discretization is performed using a Galerkin finite element scheme. The 
rectangular half-cell is divided into a grid of rectangular elements, and within each 
element the dependent variables are approximated by polynomials. For the fluid 
pressure bilinear functions of the coordinates within each element are used, and for the 
remaining variables biquadratic functions. Higher precision can be sought by 
increasing the order of the polynomial approximating functions, or by decreasing the 
size and, correspondingly, increasing the number of the elements We have adopted the 
second alternative to test the adequacy of our discretization. In principle the elements 
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Air Water 

P,  2.2 g ~ m - ~  
Pf 0.0013 g cm-3 
P 0.000 181 g cm-' 
a 100 pm 
0, 142 cm s-l 
n 4.25 
$Zl 0.65 
p (eq. (9)) 
r (eq. (9)) 0.3 

10.78 dyn cm-2 

0.571 g cm-l s (eq. (10)) 

2.2 g ~ m - ~  
1 gcm-3 
0.01 g cm-' s-l 
0.5 mm 

14.3 cm s-l 
3.65 
0.65 
0.266 dyn cm-2 
0.3 
0.571 gcm-l s 

TABLE 1. Properties of the air- and water-fluidized beds 

need not all be of the same size, and this feature could be used to advantage in handling 
steep spatial gradients. However, elements of uniform size were used throughout the 
work reported here. The solution is advanced in time using an implicit one-step Euler 
method. 

For the purpose of the computations it is clearly desirable to scale lengths in terms 
of the specified size of the periodic cell. To make the equations dimensionless two other 
quantities are needed, for example a density and a velocity. In view of the dominance 
of the solids mass in a gas-fluidized bed it is appropriate to choose ps as the density but, 
as we shall see, there are several candidates for the scaling velocity. In the computations 
the terminal velocity ut is used, so that dimensionless variables are defined as follows : 

which introduces the dimensionless groups 

P s  Z't LYIM? PIP, ut2, v,"lgLy, PfIPS, PflM 
in addition to the dimensionless parameters rand q 5 p .  However, it must be emphasized 
that this is not claimed to be a physically significant scaling. 

The question of a physically appropriate scaling for the problem of disturbance 
propagation in a fluidized bed is a difficult one. As noted above, the fastest growing 
small disturbance in such a bed is a plane wave with horizontal wavefronts, 
propagating in the upward vertical direction. Its wavelength, speed of growth and 
velocity all depend on q50, and the wavelength and reciprocal of the speed of growth 
clearly provide the physically relevant length and time scales. In the computations the 
cell height L y  should be of the order of this wavelength. It would, therefore, be 
desirable to relate these quantities to the basic properties of the particles and the fluid 
for the two systems studied here, as listed in table 1 .  However, stability theories relate 
the parameters of the propagating disturbances only to effective mechanical properties 
of the uniform unperturbed state. As emphasized by Batchelor (19%) our physical 
understanding of the micromechanics of suspensions is not yet adequate to link these, 
in turn, to the bed expansion and the physical properties of the fluid and the particles. 
At best, therefore, we must settle for scalings related to effective properties of the 
uniform bed which are, in principle, independently measurable. 

With the expression (9) or other analytical forms for p s  there is a further difficulty. 
In this work we study two systems, namely a bed of 200 pm diameter glass beads 
fluidized by air at ambient conditions and a bed of 1 mm diameter glass beads fluidized 
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FIGURE 1 .  Dependence ofps on Q assumed in this work (broken curve) compared with a more 
realistic form of this dependence (continuous curve). 

by water. Their relevant physical properties are listed in table 1. Both these systems 
would be expected to have about the same solids volume fraction at minimum 
fluidization, and in both cases the onset of instability would be expected immediately 
beyond minimum fluidization. It would, therefore, be appropriate to compare the 
propagation of disturbances in each of the two suspensions at a common value of the 
solids volume fraction, slightly smaller than that at minimum fluidization. However, 
with the expression for p s  used here, and sketched as the broken curve in figure 1, there 
is no phenomenon of minimum fluidization. Because p s  is represented as increasing 
without bound asymptotically as Q, -+ 4, the bed begins to expand reversibly as soon 
as the fluid velocity increases from zero. This smooth expansion is interrupted only at 
the critical volume fraction q5c where the uniform suspension becomes unstable. The 
actual behaviour of beds like those treated here is represented better by a form for p s  
indicated by the solid curve sketched in figure 1. Then both p ,  and its derivative with 
respect to 4 remain bounded when 4 + # p ,  and their values are such that the uniform 
bed is unstable for all 4 < y5p. For all larger values ofp,, q5 retains the constant value 
Q p ,  reflecting the incompressibility of a random packing of hard spheres. With this 
form for p s  expansion of the bed occurs only when the fluid velocity reaches a value 
where the drag force balances the weight of the particles (the condition of minimum 
fluidization) and the expanded bed immediately becomes unstable. Since the form for 
p s  given by (9) predicts a transition from stability to instability at some critical volume 
fraction Qc (smaller than 9,) but no condition of minimum fluidization, the closest 
analogue of a real dense fluidized bed we can find, with this form for p,, is a spatially 
uniform suspension with solids volume fraction slightly smaller than q5c. This is the 
base state chosen for the present work and its volume fraction will be denoted by $,,. 
However, this choice introduces a further difficulty into the selection of a scaling length, 
since it is found that the wavelength of the fastest growing small perturbation increases 
without bound as q5,, + q5c. Thus the scaling length depends in a very sensitive manner 
on the choice of c $ ~  and it increases without bound as $,, + q5c. Clearly then, in these 
circumstances there is no question of identifying a unique, characteristic length scale 
related to the properties of the particles and the fluid. Instead we must be content with 
the scale set by the wavelength of the dominant disturbance itself in the particular base 
state we select. Fortunately, to relate this wavelength, and the corresponding rate of 
growth, to the bed expansion and other effective properties of the unperturbed bed 
requires only the solution of a quadratic equation, so although these scaling variables 
cannot be written down as simple multiples or ratios of the mechanical properties of 
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FIGURE 2. Linear stability results for one-dimensional waves in an air-fluidized bed of 200 pm 
glass beads: (a) growth rate CT,, (b) wave speed u, as functions of wavenumber k. 

the uniform bed, they are easily calculated from these properties. These considerations 
are relevant to the scaling of one-dimensional disturbances. Scaling for disturbances 
with two-dimensional structure will be discussed further in 98. 

In the present work the constant Y in equation (9) is given the same value for both 
the gas- and liquid-fluidized beds, and so is the constant M in equation (10) (see table 
1). In the light of the above discussion, however, for each bed the value of P is selected 
to make q5c = 0.578, which is a reasonable representation of the volume fraction at 
minimum fluidization for particles of the type considered. As can be seen from table 
1 the required value of P is much smaller for the water-fluidized bed than the gas- 
fluidized bed, reflecting the relative ease with which this bed can be stabilized. A value 
q50 = 0.57 is then selected for the base states, in both the gas- and liquid-fluidized 
beds. This lies just on the unstable side of the stability limit, and the value of pCs(q5J is 
7.6gcm-'s-l. Though large, this is of the same order of magnitude as reported 
measurements of viscosity for dense fluidized suspensions. 

Figures 2(a) and 2(b) show the growth, cT, and the velocity of propagation, ZI, 
of small perturbations, sinusoidal in y, in the uniform gas-fluidized bed (found 
explicitly by linearization of the equations) as functions of wavenumber, k,  both at the 
expansion corresponding to limiting stability, and at #o. At bed expansion q50 the 
growth is most rapid at a wavelength of about 3.14 cm, so this sets the length scale for 
the gas-fluidized bed. Figures 3 (a)  and 3 (b) give the corresponding information for the 
water-fluidized bed, and here the wavelength of the dominant disturbance is 1.86 cm. 
All the properties of the dominant small disturbance are listed for each bed in table 2, 
where other properties of the base state, such as the fluidization velocity u,,, the 
continuity wave speed V,  and the speeds of the upward and downward propagating 
dynamic waves, c, and cd, are also quoted. (For definitions of the continuity and 
dynamic wave velocities see, for example, Liu 1982.) Both the growth rates and the 
speeds of propagation in the liquid-fluidized bed are seen to be smaller than those in 
the gas-fluidized bed by at least a decimal order of magnitude. 

Note that there is a critical value of the wavenumber for each bed, above which the 
uniform bed is stable, and this increases as the bed is expanded. As a result, 
computational difficulties might be expected whenever these is an extended region of 
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I 

k (cm-l) k (cm-I) 

FIGURE 3. Linear stability results for one-dimensional waves in a water-fluidized bed of 1 mm 
glass beads: (a) growth rate a?, (b) wave speed u, as functions of wavenumber k.  

Gas Liquid 

Solids volume fraction, $,, 0.57 0.57 
Fluidization velocity, uo 9.14 cm s-l 1.53 cm s-' 
Continuity wave speed, V 22.15 cm s-l 3.18 cm s-' 
Upward dynamic wave speed, c, 2.07 cm s-I 

Downward dynamic wave speed, c, 1.02 cm s-' 
Wavelength of dominant mode, Am 3.14 cm 1.86 cm 
Speed of dominant mode, urn 2.82 cm s-' 
Growth time of dominant mode, l/a; 0.689 s 36.1 s 

16.57 cm s-' 
16.55 cm s-' 

19.4 cm s-' 

TABLE 2 .  Properties of the unperturbed uniform beds 

suspension whose concentration is so low that waves on the length scale of the 
computational elements become unstable. Numerical ripple would then be expected to 
grow and interfere with the solution. This difficulty might be mitigated with other 
algebraic forms for the dependence of p s  on q5, such as that used by Harris & Crighton 
(1 994), which predict a restabilization of the bed at sufficiently high expansion. 

4. One-dimensional structures 
We now address the propagation and growth of one-dimensional waves with 

horizontal plane wavefronts. The initial stages of motion can then be found analytically 
by linearization about the uniform bed, introducing a perturbation of the form 
exp (r*t* + ik*y*) in terms of the dimensionless variables used in the computations, 
where cr* = cr: - icf . This is valuable in a number of ways for the subsequent numerical 
integration. First, the adequacy of the subdivision of the computational domain into 
elements can be tested by comparing the explicit expressions for the eigenvalues with 
the corresponding eigenvalues of the computational algorithm. The element size is 
decreased until the latter converge on the former to acceptable accuracy. Secondly, the 
explicit solution of the linearized problem provides initial conditions for the numerical 
integration, with the concentration, pressure and velocity fields close to the proper 
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phase relation with each other, eliminating the potential problem of following rapid 
transients as this relation is established. Thirdly, the short-time solutions, generated by 
integration forward in time, can be compared with the known solutions from 
linearization to check that the time step used in the numerical integration is short 
enough, at least initially. 

If it was intended to confine attention entirely to one-dimensional motions it would 
be efficient to write a separate, and much simpler, code to generate them. However, the 
most interesting results are found in two dimensions, and in the way initially one- 
dimensional motions develop into the second dimension when the constraint of one- 
dimensionality is lifted, so we have used the full two-dimensional algorithm 
throughout, constraining the motion to be one-dimensional, when required, by making 
the cell narrow in the lateral direction and spanning its half-width with a single 
element. Then, for the gas-fluidized bed and a cell with L, = 3.14 cm (the wavelength 
A" of the dominant linear mode) table 3 illustrates how the three eigenvalues of the 
computational algorithm with the (algebraically) largest real parts converge toward the 
corresponding explicitly determined eigenvalues, as the number of intervals into which 
the cell is divided in the vertical direction increases. Convergence is seen to be rapid as 
the grid is refined. With twenty intervals the real and imaginary parts of the dominant 
computed and explicitly determined eigenvalue differ by no more than one in the fourth 
significant figure. The precision of the computed values of the two more-stable 
eigenvalues is not as high, but is never worse than one part in a hundred. 

The length of the time step needed to maintain adequate accuracy can be increased 
substantially by carrying out the integration in a reference frame that is moving at a 
velocity close to that of the propagating wave. This velocity changes, of course, as the 
wave grows, so the speed of the reference frame is also changed, from time to time, 
whenever it differs significantly from that of the wave. As we shall see, the waveform 
eventually develops a pronounced asymmetry and may change shape quite quickly as 
it rises through the bed. The objective is then to match the speed of the reference frame 
to the speed of rise of the steepest part of the wave profile. 

Computations of one-dimensional waves similar to those described here have 
previously been reported by Needham & Merkin (1986), but their results were 
restricted to gas-fluidized beds. 

It was noted in the Introduction that linear stability theory indicates only 
quantitative differences between gas- and liquid-fluidized beds, both growth rates and 
speeds of propagation being much larger in the former. Since we seek qualitative 
differences in behaviour, in presenting the results it is convenient to suppress the merely 
quantitative differences by scaling times in terms of the growth time (l/up) for the 
fastest growing small perturbation. Lengths are scaled in terms of the wavelength A" 
of this perturbation, and velocities will be quoted as multiples of the continuity wave 
velocity V, given in table 2 for each system. (Later it will be useful to express them 
alternatively as multiples of the fluidization velocity u,,.) Distinguishing these 
dimensionless forms by tildes, we have 

i= tap, 1, = L , / P ,  5 = v/v. 
For the gas-fluidized bed figure 4 (a) illustrates the computed development of an 
initially small, sinusoidal perturbation with the wavelength A" (3.14 cm). Profiles of the 
solids volume fraction are shown at a sequence of values of T. At T =  2.9 the wave is 
essentially fully developed and thereafter it propagates without significant change in 
form. (In all the one-dimensional waves illustrated below the final wave profiles are 
also fully developed.) The relative positions of the profiles give no indication of the 
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FIGURE 4. Development of one-dimensional waves in the air-fluidized bed. (a) The fastest growing 
wave L, = 1 : (i) i = 0,Jii) i = 0.16, (iii) i = 0.80, (iv) i = 2.9; initial wave speed: D = 0.876, final wave 
speed: D = 0.844. (b) L, = 2: (i) I =  0,Jii) ? =  0.58, (iii) i= 1.9, (iv) i= 3.2; initial wave speed: D = 
0.966, final wave speed: D = 0.862. (c) L, = 3: (1) i= 0, (ii) i = 0.97, (iii) ?= 2.58, (iv) i = 2.85; initial 
wave speed: ii = 0.975, final wave speed: D = 0.889. 

No. of intervals in L, Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 

5 0.03407-0.8255 - - 

10 0.031 79-0.85681 -0.06276-1.27031 -0,29726-1.189Oi 
15 0.032094.8579i -0.05475-1.3OOOi - 0.252 17-1.37711 
20 0.032 12-0.85811 -0.053 541.30371 -0.24496-1.40221 
Analytical 0.032 13-0.85811 -0.053 12-1.3049i -0.24249-1.4102i 

TABLE 3. Convergence of computed eigenvalues for gas fluidized bed, L, = x cm 

upward motion of the wave, since the frame of reference is adjusted as described above. 
However, as noted in the caption, the wave decelerates from an initial dimensionless 
speed v" (relative to the rest frame) of 0.876, when the amplitude is small, to a final speed 
B = 0.844. The profile also becomes asymmetric, assuming the form of periodic plugs 



Formation of bubbles in juidized beds 339 

of high-density material with a sharper upper surface and a more diffuse lower surface. 
This asymmetry has previously been predicted, on different grounds, by Fanucci et al. 
(1979), Ganser & Drew (1990), Dankworth & Sundaresan (1991) and Goz (1992). The 
same fully developed wave can be reached from other initial conditions; for example, if 
the amplitude of the initial sine wave perturbation is larger than that of the fully 
developed wave, it is found to decay to the same final profile. 

The integration can, of course, be started from small sinusoidal perturbations of the 
uniform bed with wavelengths other than A", and figures 4(b) and 4(c)  show the results 
for wavelengths 2A" and 3Am, respectively. The results are qualitatively similar to those 
seen in figure 4(a). Both the initial and final wave speeds, and the time needed to reach 
the fully developed waveform, increase a little as the wavelength is increased, but it is 
important to note that the order of magnitude of the elapsed time remains the same in 
all cases. With increase in wavelength the most striking change is the marked increase 
in depth of the band of low concentration. The spatial width of this band remains 
approximately the same in all three cases; as the wavelength is increased the extra 
material, no longer accommodated in the band of low density, is taken up by a dense 
bed with solids volume fraction 0.6 or larger, which separates the bands of low density. 
These two observations are not unrelated. Since the mean volume fraction remains 0.57 
in all cases, and the volume fraction in the dense regions remains near 0.6, the decrease 
in concentration in the band of low concentration with increasing wavelength is an 
immediate consequence of the fact that its width does not change significantly. 

Figure 4 (c) illustrates very clearly the mechanism of propagation of these waves. 
They consist of a sequence of plugs with high particle concentration. The unsupported 
lower surface of each plug (the left side in the figure) is unstable, and particles rain 
down from it, accelerating under gravity so that their concentration decreases on 
moving down. They then decelerate suddenly as they meet the sharp upper boundary 
of the plug below. This transfer of the particles from each plug to its neighbour below 
is responsible for the upward motion of the whole concentration pattern. The 
phenomenon is quite familiar in practice from observations of gas-fluidized beds in 
long narrow tubes. 

The above results are consistent with those of Needham & Merkin (1986). Our 
unperturbed bed is 'dense', in the sense of those authors (i.e. 1 --q& < E*, in their 
notation) and we see a pattern of extended plugs of high particle concentration 
separated by narrower bands of low concentration, in agreement with their results. 
However, their computed solutions are all of quite small amplitude and, corre- 
spondingly, short wavelength. The marked asymmetry of our results is not seen in 
theirs. This may be a consequence of their assumption that p s  K 4, or may simply be 
a consequence of the small amplitudes of their waves. 

Figure 5 (a-c) shows the development of one-dimensional waves from small initial 
perturbations of the water-fluidized bed. The wavelength A" (1.86 cm), shown in figure 
5 (a), corresponds to the fastest growing small perturbation, while figures 5 (b) and 5 (c )  
exhibit the results for double and treble this wavelength, respectively. Thus, figure 5 is 
the analogue, for the water-fluidized bed, of figure 4, and the results, in terms of the 
scaled variables, are seen to be similar. The time required to reach the fully developed 
waveform in all cases lie between two and four times the growth time for the fastest 
growing small perturbation. The amplitudes achieved by the fully developed waves are 
similar at corresponding multiples of A m ;  indeed, for wavelength 3A" the amplitude is 
larger in the water-fluidized bed. In all cases the velocity of propagation is of the same 
order as the continuity wave velocity, and it changes little as the disturbance grows. (In 
most cases there is a small decrease, while the small increase recorded in the last two 
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FIGURE 5. Development of one-dimensional waves in the water-fluidized bed. (a) The fastest growing 
wave L, =-1. (i) i= 0, (ii) i= 0.72, (iii) i =  1.8; initial wave speed: ii = 0.887, final wave speed: ii = 
0.884. (b) L, = 2 .  (i) f = 0, Qi) i= 0.72, (iii) i = 1.44, (iv) i = 2.16; initial wave speed: 6 = 0.959, final 
wave speed: ii = 0.969. (c) L, = 3 :  (1) i= 0, (ii) i= 0.64, (iii) i= 1.20, (iv) i =  1.52, (v) i= 2.16; initial 
wave speed: ii = 0.975, final wave speed: 6 = 0.984. 

cases lies within the uncertainty in evaluating this velocity.) The only noticeable 
qualitative difference between the gas- and liquid-fluidized systems lies in the 
asymmetry of the particle concentration profiles, which is less marked for the liquid- 
fluidized bed. There is no qualitative distinction in behaviour that could explain why 
bubbles are seen, in practice, in the gas-fluidized case, but not in the liquid-fluidized 
case. Thus, this question is not resolved by replacing a linear small-amplitude 
approximation by the full nonlinear equations, if attention remains confined to one- 
dimensional motions. 

The fully developed waves described so far have all been grown from small 
perturbations of an initially unstable uniform fluidized bed. It is interesting to note that 
the same sort of wave can also be grown from a stable uniform bed, provided the initial 
perturbation is large enough and the bed is near enough to the stability limit. For 
example, we have found that sufficiently large sinusoidal perturbations of the gas- 
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fluidized bed with $o = 0.58, just on the stable side of the critical volume fraction, will 
grow into fully developed waves similar in every respect to those described above. This 
coexistence of a stable state of uniform fluidization and a large-amplitude travelling 
wave solution is a consequence of the fact that the bifurcation at $ = 0.578 is sub- 
critical in this case (B. Glasser 1994, personal communication). 

5. Stability of the fully developed one-dimensional waves 
When viewed from a frame of reference moving at its own speed, a fully developed 

wave is a time-independent solution of the equations of motion. Its stability can be 
investigated either by retaining the constraint of one-dimensionality, or by viewing it 
as a degenerate case of a two-dimensional solution and questioning its stability to two- 
dimensional perturbations. Since the base state is now a numerically generated non- 
uniform solution of the equations of motion the eigenvalues cannot be found 
analytically, but they can be approximated as the eigenvalues of the numerical 
algorithm. These can then be computed, for partitions of the periodic cell into 
successively increasing numbers of elements, until they converge. In this way each of 
the fully developed waves described in the previous section is found to have only 
eigenvalues with negative real parts, provided the perturbed wave is constrained to 
remain one-dimensional and to retain the same minimum spatial period as the fully 
developed wave itself. With these constraints, therefore, all the fully developed, one- 
dimensional waves reported here are stable. 

However, each fully developed solution is also periodic with any integer multiple of 
its shortest period, so its stability can also be investigated under the less restrictive 
constraint that the perturbed wave shall remain periodic with one of these longer 
periods. As an example of this consider the fully developed wave of wavelength A" in 
the air-fluidized bed, shown in figure 4(a). When this is exposed to perturbations of 
period 2h" the leading eigenvalues are found to be a complex-conjugate pair in the 
right half-plane. After perturbing the fully developed wave by adding a small multiple 
of the corresponding eigenfunction, numerical integration generates the sequence of 
concentration profiles shown in figure 6. It is seen that one period of the fully developed 
wave of wavelength A" grows at the expense of the other, finally converging to a single 
period of the fully developed wave of wavelength 2h" that was shown previously in 
figure 4(b). The total elapsed time for this process is rather longer than the times seen 
earlier for growth of the waves from small perturbations of the uniform bed. 

Similar results are found for other one-dimensional waves, in both the gas- and the 
liquid-fluidized beds. Each wave is stable to perturbations constrained to its smallest 
period, but unstable when the constraint is relaxed to a multiple of this period. When 
this multiple is twice the smallest period, adjacent bands of low particle concentration 
coalesce, leading to the fully developed wave with wavelength twice that of the original 
wave. It is not clear how long this pattern of behaviour persists as the wavelength of 
the wave is increased. We have indications that, for very long waves, behaviour of the 
type just described may not occur. Instead the pattern of concentration appears to 
break up and then remain time-dependent without settling into any regular pattern. 
This may be related to the existence of an upper bound on the wavelength for stable 
one-dimensional waves, as predicted by Needham & Merkin (1986). 

I 
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FIGURE 6. Coalescence of adjacent waves of the fully developed one-dimensional wavetrain of 
wavelength A, in the air-fluidized bed, when constrained to cell with L, = 2A,. (i) ? = 0, (ii) f = 3.19, 
(iii) ?= 5.81, (iv) ?= 9.0. Final wave speed: i; = 0.862. 

6. Two-dimensional motions in the air-fluidized bed 
Linear analyses (Didwania & Homsy 1982; Batchelor & Nitsche 1991; Batchelor 

1993) indicate that the one-dimensional waves may be unstable to two-dimensional 
perturbations. This question can be investigated by increasing the width of the 
computational cell in the horizontal direction, thus admitting solutions of specified, but 
not necessarily the same, periodicity in each of the orthogonal spatial directions. For 
each size of cell the subdivision into elements can then be refined until the eigenvalues 
with largest real parts converge, and the location of these eigenvalues in the complex 
plane then determines the stability of the one-dimensional wave to two-dimensional 
perturbations with the specified spatial periodicities. The width of the cell in the 
horizontal direction can subsequently be varied to find the value of L, for which the 
leading eigenvalue lies furthest to the right in the complex plane, thus identifying the 
most unstable (or least stable) perturbation. As L, is increased from zero it is found 
that an eigenvalue migrates along the real axis into the right half-plane. With further 
increase in L, this motion continues, and the leading eigenvalue may be followed by 
others. All these eigenvalues are real and, if L, is increased still further, their motion 
reverses and they retreat. As an example, figure 7 shows the distribution of the 
computed eigenvalues for the fully developed, one-dimensional wave of wavelength 
2h" in the air-fluidized bed, with L, = L,. The real part of the leading eigenvalue, 
which is largest with this value of L,, is positive as noted above, so the one-dimensional 
wave is unstable to this two-dimensional perturbation. The procedure followed to 
track the evolution of two-dimensional structure is then the same as that described 
above for the one-dimensional case. A small multiple of the eigenfunction 
corresponding to the leading eigenvalue is added to the fully developed one- 
dimensional solution, then numerical integration starts from this initial condition. 

The solids volume fraction thus generated at successively increasing values of the 
time is depicted in figure 8(a-d) by shading on a grey scale, with white representing 



Formation of bubbles in fluidized beds 343 

0.2 1 2D mode 
0 1Dmode 

-0.1 0 0.1 
d 

0.2 

FIGURE 7. Leading eigenvalues for the fully developed one-dimensional wave of wavelength 2h, 
in the air-fluidized bed, when constrained to a cell with L, = L, = 2h,. (n:, n:) = (a,, a,) Ly/u,. 

q5 = 0 and black q5 = q5p = 0.65. The initial perturbation is seen to distort the band of 
low particle concentration slightly, so that it is wider in the middle of the cell than at the 
edges. As time passes this distortion increases, the central part of the pattern begins to 
move up relative to the part near the edges of the cell, and the concentration of particles 
decreases further in a compact region situated symmetrically about the centreline of 
the cell at the apex of the distorted wave. The lowest value reached by the solids volume 
fraction is q5 = 0.265 at the final time. The whole of the development shown in these 
four panels is complete at t" = 0.90, so it is comparable in speed with the development 
of the one-dimensional wave from the uniform bed. 

The velocities of both fluid and particles at t"= 0.90 (seen from a reference frame 
with upward velocity ijf = 0.862) are shown in figure 9, with representation by velocity 
vectors on the left and instantaneous streamlines on the right. Contours of solids 
volume fraction are superimposed to relate the velocity fields to the concentration 
distributions of figure 8. (Some caution is needed in interpretation of this and 
subsequent similar figures, since the flow pattern is not yet fully developed so 
streamlines and particle paths do not coincide for either phase.) The most striking 
feature is the almost closed vortex in the fluid velocity field, centred a little above the 
point of lowest solids volume fraction, and comparable in size with the largest of the 
closed volume fraction contours. The particle streamlines bend away from the median 
line of the cell as they traverse the region of low particle concentration, so the particles 
tend to move round this region, rather than through it. Consequently the mean density 
of the suspension on the lateral boundaries of the cell is higher than that of the original 
uniform bed, while the mean density on the median line is lower. Note that the speed 
of the frame of reference remains the same as the velocity of rise of the fully developed 
one-dimensional wave to which the perturbation was applied. There is very little 
change in the velocity of rise of the particle concentration pattern in the earlier stages 
of growth, but the compact region of low concentration is beginning to accelerate 
upward at t" = 0.90. 

For the fully developed one-dimensional wave with L, = 3h", shown in figure 4(c), 
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FIGURE 8. Two-dimensional growth of the perturbed fully developed one-dimensional wave of 
wavelength 2h, in the air-fluidized bed. L, = L, = 2h,. 10 x 40 element mesh. At* = 0.01. (a) .?= 0, 

the real part of the leading eigenvalue is found to be largest when L, = 2h". With 
initial conditions corresponding to the fully developed one-dimensional wave, 
supplemented by a small increment of the eigenfunction belonging to this eigenvalue, 
the computed solids fraction distributions at successively increasing times are shown in 
figure 10. The general picture is similar to figure 8, as is the total elapsed time, namely 
t" = 0.75. During the computations the speed of the frame of reference is adjusted, from 
time to time, so that the region of steepest concentration gradient, around the floor of 
the 'bubble' of low particle concentration, remains approximately at rest in the current 
frame. The velocity of rise of the one-dimensional wave from which the solution started 
is fi = 0.888, while the velocity of the working frame (relative to the rest frame) at t" = 
0.75 is fif = 1.14. At this time the spatial distribution of particle concentration, viewed 
from the working frame, is changing only slowly, so it can be regarded as rising at this 
speed without significant change of form, when viewed from the rest frame. Expressed 
in terms of the fluidization velocity the rise velocity of the concentration pattern is, 
therefore, 2 . 7 6 ~ ~ .  

(b) f =  0.45, (c) I =  0.77, ( d )  f =  0.90. 
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FIGURE 9. Velocity fields for the solution of figure 8 at T =  0.90: (a) fluid velocity (longest 
vector = 1 . 6 3 ~ ~ ) ;  (b)  solids velocity (longest vector = 3.1524,). ijr = 0.862 (uf = 2.0924,). 

At = 0.75 the solution bears a strong resemblance to a bubble in a fluidized bed or, 
rather, one member of an infinite two-dimensional array of bubbles. The lowest 
particle concentration reached is q5 = 0.14, which by no means matches the 
conventional picture of a bubble completely free of particles. However, the minimum 
concentration is still decreasing slowly and there is a bound on how low it can go, given 
the spatial extent of the bubble, imposed by the requirement that the mean volume 
fraction of solids over the whole cell must retain the starting value of 0.57. (A similar 
consideration limited the lowest concentration achievable in a one-dimensional wave.) 
This bound could be lowered by considering an even larger cell, but then computational 
problems begin to impose a limit. As the solids volume fraction of a uniform bed is 
decreased the limiting value of the wavenumber, separating stable from unstable 
behaviour, increases. Eventually the corresponding wavelength becomes shorter than 
the vertical dimension of the computational elements, and at this point any numerical 
ripple, on the scale of these elements, will begin to grow. Thus, as noted earlier, we 
might anticipate numerical difficulties whenever there is an extended region with 
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(b) 

FIGURE 10. Two-dimensional growth of the perturbed fully developed one-dimensional wave of 
wavelength 3h, in the air-fluidized bed. L, = 3h,, L, = 2h,. 20 x 40 element mesh. At* = 0.01. 
(a)  i= 0, (b)  i= 0.36, (c) I =  0.58, ( d )  i=  0.75. 

particle concentration so low that ripples on this scale can grow. Of course, this is not 
an absolute barrier to progress, since the onset of ripples can be delayed by going to 
a smaller element size, but there are obvious practical limits to this strategy. As 
remarked earlier, this difficulty could possibly be eliminated by using an algebraic 
form for the dependence of p s  on # which makes the bed stable at low particle 
concentrations. 

The computed ‘bubble ’ has a diffuse roof, through which the particle concentration 
increases gradually on moving up into the dense bed, but there is a relatively sharply 
defined floor. (These features mirror corresponding observations for the one- 
dimensional wave.) The presence of a mantle of reduced particle concentration above 
the bubble was first predicted by one of the present authors (Jackson 1963b) and 
subsequently there have been attempts to detect this experimentally (Lockett & 
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FIGURE 11. Velocity fields for the solution of figure 10 at f =  0.36: (a) fluid velocity (longest 
vector = 1.69~4,); (b) solids velocity (longest vector = 3.48~4,). fi, = 0.936 (v, = 2.27~4,). 

Harrison 1967; Nguyen, Leung & Weiland 1973), culminating in recent X-ray studies 
of Yates, Cheesman & Sergeev (1994), which seem to establish its existence beyond 
doubt. However, Yates et al. also found that the wake was a region of lower particle 
concentration, in contrast with the results in figure 10. 

In the fluidization literature the observed velocity of rise of a bubble in a fluidized 
bed has often been compared with the velocity of the well-known Davies-Taylor 
bubble of the same diameter, db: 

where pv denotes the density of the material within the bubble and p b  the density of the 
material outside. The precise 'diameter' of the bubble in figure 10(d) is a matter of 
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FIGURE 12. Velocity fields for the solution of figure 10 at i= 0.58: (a) fluid velocity (longest 
vector = 2 . 3 5 ~ ~ ) ;  (6) solids velocity (longest vector = 3 . 9 2 ~ ~ ) .  0, = 1.03 (uf = 2 . 4 8 ~ ~ ) .  

choice, since there is no sharply defined surface, but a value of the order of 2 cm is 
clearly reasonable. In the present case, where pv/p, z 0.15/0.57, for a bubble of 
diameter 2 cm the above formula gives U, = 25.3 cm s-l = 2.77u0, very close to the 
value 2 . 7 6 ~ ~  found from the computations. Of course, this is largely fortuitous in view 
of the somewhat arbitrary choice of diameter. Furthermore the value of the Reynolds 
number for this bubble, based on the density of the undisturbed bed and viscosity 
p: = 7.6 g cm-l s-l, is only 8.35, not large enough to justify drawing an analogy with 
the Davies-Taylor bubble. 

Since the rise velocity of the computed bubble is larger than the fluidization velocity 
the well-known and simple argument of Davidson (1961) indicates that the rising 
bubble should be accompanied by a 'cloud' of gas which moves with it, and within 
which there is a closed circulation. Figures 11-13 trace the development of this by 
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FIGURE 13. Velocity fields for the solution of figure 10 at f =  0.75: (a) fluid velocity (longest 
vector = 2 . 8 4 ~ ~ ) ;  (b)  solids velocity (longest vector = 4 . 5 2 ~ ~ ) .  i7, = 1.14 (u, = 2 . 7 6 ~ ~ ) .  

showing the fluid and particle velocity fields corresponding to the last three panels of 
figure 10, using the format already described for figure 8. (The velocity fields at I = 0, 
corresponding to the first panel, are not shown since they differ only slightly from those 
of the one-dimensional wave.) The closed circulation in the fluid flow has not yet 
appeared at f = 0.36, but it is well established by f = 0.58. At T = 0.75 note that the 
centre of the vortex lies somewhat above the region of lowest particle concentration, 
as was predicted by early attempts at a solution representing bubble motion (Jackson 
1963 b) and is observed experimentally. Note also that the closed streamlines extend 
out into regions of quite high particle concentration. The largest value of the upward 
fluid velocity (relative to the bubble) on the axis of the vortex is about one third of the 
rise velocity of the bubble in the rest frame. It has been speculated (Davidson & 
Harrison 1963) that these two velocities should be approximately equal and, 
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FIGURE 14. Quantities of interest plotted along the y-axis of the solution shown in figure 10(d): 
(a) solids volume fraction, (6)  fluid velocity, (c) solids velocity, ( d )  slip velocity. For (b)  and 
(c) uf = 2 . 7 5 ~ ~ .  Labels A and C identify corresponding points on each panel. 

remembering that our numerically generated bubble is by no means free of particles 
and is still developing, our result verifies that they are, indeed, of the same order of 
magnitude. 

It is instructive to examine in more detail the spatial variation of several important 
quantities along the vertical centreline of the cell; that is, the axis of symmetry of the 
bubble. Figure 14(a-d) shows the solids volume fraction and the fluid velocity, the 
solids velocity and the relative velocity as multiples of the terminal velocity 0,. Note the 
sharp spike, of width approximately equal to the size of the computational element, 
which appears at the minimum of the solids volume fraction and is reflected in all the 
other curves. This is to be expected, for the reason given above, and its presence warns 
that the bubble cannot be grown any further without resort to a finer subdivision of 
the cell into elements. The points labelled A and C in figure 14(a) identify the two 
positions where the solids volume fraction takes the value 0.4.  They may arbitrarily be 
taken to indicate the roof and floor of the bubble, respectively, and the corresponding 
pairs of points are labelled in the same way in the other panels. Figure 14(b) reveals 
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FIGURE 15. Density distribution at f =  0.75 for the bubble with L, = 3h,,L, = 2h, in the 
air-fluidized bed. (a) 20 x 40 mesh, (b) 10 x 40 mesh. 

a bounded interval of y in which upflow of fluid is generated by the vortex, while 14(c) 
shows the downward acceleration of the particles as they fall from the roof, the sudden 
deceleration when they hit the high-concentration region which extends below the floor 
of the bubble, and the subsequent, more gradual acceleration down into the bulk of the 
bed. Figure 14(d) confirms that the relative velocity of the two phases becomes large 
within the bubble, as would be expected from the low concentration of particles, 
reaching about one third of the terminal velocity of fall of an isolated particle. The 
largest value attained by uy/vt  is approximately 0.065, so the upward circulation of gas 
does not become nearly strong enough to lift an isolated particle upward relative to the 
bubble. 

The solution illustrated in figures 10-13 was generated with the rectangular cell 
shown divided into a grid of elements with twenty divisions in the horizontal direction 
and forty in the vertical direction. An idea of the adequacy of this subdivision can be 
obtained from figure 15, where figure 10(d) is reproduced, together with the 
corresponding density distribution computed using a grid of only 10 x 40 elements. The 
most noticeable difference is seen around the base of the bubble, where numerical 
artifacts on the scale of the elements appear in the solution generated using the coarser 
grid. 

The above results appear to give a plausible representation of the growth of a regular 
two-dimensional array of bubbles in a fluidized bed, and establish that relatively simple 
equations of motion contain the physics needed to account for their salient observed 
features. The predicted bubble shape is not quite like shapes observed in ‘two- 
dimensional’ fluidized beds; for example, we do not see the typical form of the floor 
of the bubble. However, a limited number of calculations with a viscosity ,us 
independent of solids volume fraction, in contrast to the expression (10) used in the 
present computations, has indicated that the detailed shape of the bubble floor can be 
modified quite significantly by a change in the rheology of the particle assembly (B. 
Glasser 1994, personal communication). 

The route by which we arrived at the bubble shown in figure 10(d) is rather special, 
since we chose first to constrain the perturbation of the uniform bed to be one- 
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(b) 

FIGURE 16. Growth of a small, initially two-dimensional perturbation of the uniform air-fluidized 
bed (0' = 0.02, B = O.l) ,  L, = 3h,, Lr = 2h,. 20 x 40 element mesh. At* = 0.01. (a)  t"= 0, (b)  t" = 0.44, 
(c) f =  0.91, (d)  t"= 1.35. 

dimensional, only relaxing this restriction when the one-dimensional growth was 
essentially complete. By this route the elapsed times for the computed growth of the 
one-dimensional wave, and for the subsequent development of the two-dimensional 
structure, are similar. The question then remains whether the same type of bubble will 
grow from a small perturbation of the uniform bed which has a two-dimensional 
structure from the start. To answer this a perturbation was constructed by specifying 
a spatial distribution of solids volume fraction with the form 

q5G, y ,  0) = #" + q5' cos ( 2 v / L v )  [(I - €1 + cos (2nx/L,)I, (15) 
then deducing the corresponding velocity perturbations from the explicitly known 
solutions of the linearized equations. In (1 5 )  q5' measures the overall amplitude of the 
initial perturbation, while E is a measure of its two-dimensional nature. 



Formation of bubbles in juidized beds 

(b) 

353 

FIGURE 17. Two-dimensional growth of the perturbed fully-developed one-dimensional wave of 
wavelength 3h,,, in the water-fluidized bed. L,  = 3h,, L,  = 3h,. 10 x 40 element mesh. At* = 0.01. (a)  
?= 0, (b) I =  0.033, (c )  I =  0.075, (d )  ?= 0.28. 

Numerical solutions of the full nonlinear equations were generated from initial 
conditions of the type (15), with q5' = 0.02 and three different values of F ,  namely 0,001, 
0.01 and 0.1. In each case the initial development is found to be dominated by the one- 
dimensional component of the disturbance, which grows fastest. As the amplitude of 
the one-dimensional structure increases, the presence of the small lateral non- 
uniformities activates the lateral instability mechanism and, as a result, the bubble-like 
solution is eventually reached in all three cases. This is illustrated by figure 16, which 
shows the solids volume fraction at a sequence of increasing values of the time for the 
case e = 0.1. After an initial period during which the disturbance changes shape, but 
does not deepen very much, growth becomes rapid, and at i =  1.35 a perfectly 
recognizable bubble has developed. This corresponds closely to the structure depicted 
in figure lO(c), so further development is expected to be similar in both cases. Thus, we 
have established that essentially the same bubble-like solution develops by quite 
different routes, and is not peculiar to the constrained path depicted in figure 10. 
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FIGURE 18. Velocity fields for the solution of figure 17 at ?= 0.033: (a) fluid velocity (longest 
vector = 7.17~,), (b) solids velocity (longest vector = 7.86~"). C j  = 2.68 (u j  = 5.58~"). 

7. Two-dimensional motions in the water-fludized bed 
The results presented above indicate that equations of motion of the type proposed 

can account for spontaneous bubble formation in a typical gas-fluidized bed. It 
remains to be seen whether the same equations will also predict an absence of bubbles 
from the liquid-fluidized bed. To treat the liquid case only the following parameter 
values are altered. 

(i) The density and viscosity, pf and ,uf, are changed from those of air to those of 
water. 

(ii) The parameters ut and n in the Richardson-Zaki equation (17) are changed to 
the values appropriate for a suspension of 1 mm glass beads in water. 

(iii) The parameter P in equation (9) is reduced so that the limiting solids volume 
fraction for stability retains the value 0.578, as for the gas-fluidized bed. 

These changes are reflected in table 1 .  
The procedure is then the same as for the gas-fluidized bed, starting with an 

investigation of the growth of two-dimensional structures from a fully developed one- 
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FIGURE 19. Velocity fields for the solution of figure 17 at ?= 0.18; (a) fluid velocity (longest 
vector = 4.14u0), (b )  solids velocity (longest vector = 5.0~~). Cf = 1.70 (0, = 3.54~~). 

dimensional wave, namely that shown in figure 5(c). This is similar to the wave of 
figure 4 (c) from which the corresponding calculation started for the gas-fluidized bed. 
Then L, = 3h", and the wave is stable when it is constrained to remain one- 
dimensional with this wavelength. Its stability to development in the second dimension 
is tested, as for the gas-fluidized bed, by increasing the width of the cell in the x- 
direction and observing the eigenvalues of the computational algorithm for two- 
dimensional perturbations of the one-dimensional travelling wave solution. These 
migrate in just the same way as described above for the case of the gas-fluidized bed. 
A real and positive eigenalue appears as the width is increased, reaching its largest 
value between L, = L, and L, = 1 .5L,. We did not attempt to locate, with any greater 
accuracy, the value of L, which maximizes this eigenvalue, but studied the growth 
of disturbances in the square cell with L, = L, = 3h". A small increment of the 
eigenfunction corresponding to this eigenvalue was added to the fully developed one- 
dimensional wave and the numerical integration was started from this initial condition. 
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(0 < 4 < 0.65) (0.560 < 4 < 0.580) 

(b) 

(0 < 4 4 0.65) (0.544 < 4 < 0.580) 

FIGURE 20 (a,b).  For caption see facing page. 

The computed solids volume fraction, at successively increasing values of the time, 
is shown in figure 17, while the fluid and particle velocity fields corresponding to figures 
17(b) and 17(d) can be found in figures 18 and 19. Up to t"= 0.033 (figure 17b) the 
development of the disturbance has some resemblance to what was seen for the air- 
fluidized bed. The wave bends upward on the centreline of the cell, a localized region 
of lower particle concentration develops at the apex of this bend, a fluid circulation 
develops in the same vicinity, and the particle streamlines bulge around this region. The 
minimum value of the solids volume fraction is about 0.15, so this concentration 
pattern comes as close to an empty bubble as anything found in the air-fluidized case 
(figure 10 d). However, the dimensionless time t" required to reach this stage is less than 
one twentieth of the corresponding dimensionless time for the air-fluidized bed. In 
other words, the growth of the secondary two-dimensional instability, relative to that 
of the primary one-dimensional instability, is much faster in the liquid-fluidized bed. 
There are also other differences between the two cases. First, the shapes of the regions 
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(0 < 4 < 0.65) (0.548 < 4 < 0.578) 

(4 

(0 < 4 < 0.65) (0.556 < 4 < 0.574) 

FIGURE 20. Growth of a small, initially two-dimensional perturbation of the uniform water-fluidized 
bed (q5' = 0 . 0 2 , ~  = 0.001), L, = 3h,, L, = 3h,. 10 x 40 element mesh. At* = 0.01. (a)  f =  0, (b)  f =  
0.42, (c) f = 0.64, ( d )  f = 0.91. 

of low concentration are quite different, with material of higher particle concentration 
bulging up from below into the incipient bubble in the case of the water-fluidized bed. 
Second, the increase in speed of rise of the incipient bubble, relative to that of the one- 
dimensional wave, is much larger in the water-fluidized bed, where the starting wave 
speed is 2.05u0, while at 2 =  0.033 the region of low concentration has accelerated to 
a speed of 5 . 5 8 ~ ~ .  In contrast, for the air-fluidized bed, the speed changes only from 
2 . 1 6 ~ ~  to 2 . 7 6 ~ ~ .  

When the integration is continued beyond this time the region of high concentration 
below the incipient bubble moves further up, eventually causing the bubble to fill in 
and become an insignificant feature, as seen in figure 17(c, d) .  By 2 = 0.075 the 
circulating vortex, associated with the region of low particle concentration, has become 
weak, and at T =  0.18 figure 19 shows that it has disappeared altogether. Note also that 
the speed of rise of the concentration pattern, relative to the rest frame, decreases again 
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FIGURE 21. Velocity fields for the solution of figure 20 at i= 0.42: (a) fluid velocity (longest 
vector = 1.94u0), (b) solids velocity (longest vector = 2 . 8 7 ~ ~ ) .  6, = 1.17 (of = 2 . 4 4 ~ ~ ) .  

after I = 0.033, and has fallen to 3.5424 at I = 0.18. The ultimate fate of the disturbance 
is uncertain, though it cannot decay completely since the uniformly fluidized state is 
unstable. Nevertheless, it is clear that the incipient bubble has only a brief transient 
existence in this case. 

The mechanism by which the bubble is disrupted is reminiscent of an early 
suggestion of Davidson & Harrison (1963), who proposed that a bubble in a liquid- 
fluidized bed would be destroyed by particles moving up into it from the dense wake 
region below. In our solution the bubble is, indeed, destroyed by an intrusion of dense 
bed from below, but the vertical component of the particle velocity is directed 
downward everywhere, at all times. The rising heap of dense material is formed because 
particles rain down from the roof of the incipient bubble more rapidly than they can 
escape through the wake. This is the opposite of the situation in the gas-fluidized bed, 
where it is found that the rate of escape exceeds the flux descending from the roof as 
the bubble develops. 
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Instead of starting from a fully developed one-dimensional wave the integration can 
alternatively be started from a small two-dimensional perturbation (15) of the uniform 
fluidized bed, and the resulting distributions of solids volume fraction are shown in 
figure 20 for a very small initial degree of two-dimensionality ( E  = 0.001). The left-hand 
panel of each pair shows the solids volume fraction on an absolute scale (white 
represents $ = 0 and black q5 = q5p = 0.65), while the right-hand panel uses an 
expanded scale to reveal details of the very small concentration variations. It is seen 
that there is little growth of the initial density perturbation. On the absolute scale a 
compact region of slightly reduced solids volume fraction can be discerned, and the 
expanded scale shows that its development is at first qualitatively similar to that of the 
corresponding, but much more vigorous, phenomenon in the air-fluidized bed, shown 
in figure 16. However, when t"> 0.42, the minimum particle concentration begins to 
increase again, so the shallow 'hole' begins to fill in. Figure 21 shows the velocity fields 
at the time the concentration perturbation is largest, namely t" = 0.42, and it is seen that 
no vortex has formed in the fluid flow; indeed, the streamlines of both phases are 
scarcely bent away from the vertical. Thus, in contrast to the case of the air-fluidized 
bed, a slightly two-dimensional perturbation of the uniform water-fluidized bed fails to 
grow to any significant extent. This appears to be a consequence of the much larger 
ratio of the time scales for one- and two-dimensional growth in the water-fluidized bed. 
In the water-fluidized case the uniform bed has no unstable eigenvalues belonging to 
two-dimensional eigenfunctions, and the small degree of two-dimensionality in the 
applied perturbation actually begins to decay initially. However, as soon as the growth 
of the unstable one-dimensional mode generates layers of alternating higher and lower 
bulk density, the two-dimensional instability rapidly asserts itself and overwhelms the 
relatively slow growing one-dimensional wave. 

The concentration distributions attained in the water-fluidized bed after some time 
can be quite complicated but, when tested by integrating with a different size of spatial 
elements, and with different time steps, they proved to be reproducible. The same 
patterns are also seen in solutions obtained by a completely different numerical method 
(B. Glasser 1994, personal communication). 

8. Discussion 
We begin by examining the time scale for the growth of two-dimensional 

perturbations of the fully developed one-dimensional waves. The one-dimensional 
waves are asymmetric and do not have a simple algebraic representation in closed 
form, so explicit expressions for the growth parameters of small perturbations cannot 
be found by linearization. However, Batchelor & Nitsche (1991) have analysed the 
stability of a fluid whose density is sinusoidally modulated in the vertical direction: 

(16) 

subject to perturbations of the form exp ( y t )  cos (ax). The density variation was 
assumed to be the result of variations in concentration of some suspended or dissolved 
material (the particles in the situation of interest here) and equations describing the 
evolution of the disturbance were formulated in terms of an average velocity, with a 
term to represent diffusion of this material. Thus the continuity equation was written 
in the form 

p = po( 1 + A  sin (ICY)) 

??! + u, - V$ = DV2$ = V - (DV$), 
at 
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where D is a diffusion coefficient and u, denotes the mixture velocity, i.e. $u + (1 - 4) u 
in our case. (The two forms for the right-hand side of (17) are equivalent if D is 
assumed constant, as in Batchelor & Nitsche, but the second form is the correct one 
if D depends on $.) The mixture was also assumed to be viscous, with a kinematic 
viscosity denoted by v. Then introducing the following dimensionless groups : 

Batchelor & Nitsche’s equation for the growth rate of the dominant perturbation 
((5.17) of their paper) can be written as 

The dimensionless growth rate s, for the fastest growing two-dimensional perturbation 
is then found by finding the largest root of (18) and maximizing it with respect to x. 

The parameter values quoted in tables 1 and 2 permit R‘ to be calculated for 
stratified fluids corresponding to the fully developed one-dimensional wave structures 
in the gas- and liquid-fluidized beds treated in this paper. Appropriate values for the 
diffusion coefficient D can also be identified using the following argument. A 
description of the relative motion of particles and fluid by a dispersion term, as in (17) 
above, is appropriate when that motion results only from a gradient in concentration, 
and inertial effects associated with it are negligible. Then, in terms of the equations of 
the present paper 

or, if w = u-u, 
0 = - VPS + B(#) (u - 4 

The fluid and particle phase velocities can then alternatively be expressed in terms of 
w and u, ; in particular u = u, + (1 - $) w.  The sum of the particle and fluid continuity 
equations, (1) and (2), then shows that V - u, = 0, and the continuity equation for the 
particles can be written in terms of u, and w as 

-+u, a$ - V$ = -v * [$(I -4) w ]  
at 

or, using (19), 

This has the same form as (17), so the diffusion coefficient can be related to pi and /I: 

Finally, from (16) A = A p / p , ,  where A p  is the difference between the highest and lowest 
densities of the stratified fluid, and in applying the above analysis to our fully 
developed pattern of one-dimensional waves this can be determined from figures 4 (c) 
and 5 (c), for the gas- and liquid-fluidized beds, respectively. Thus, values of s, and x, 
can be calculated from (18) then compared with the same quantities found from the 
dominant eigenvalue of our computational algorithm for small two-dimensional 
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S", x m  sm x m  
R' v / D  (B&N) (B&N) (ASJ) (ASJ) 

Air-fluidized bed ; iy = 3 35.05 5.5 0.567 0.97 0.387 zz 1.5 
(9.04 s-l) (6.18 s-') 

(7.44 s-1) (3.70 s-l) 
Water-fluidized bed; Ly = 3 7.10 542 0.491 0.88 0.244 x 1.0 

TABLE 4. Properties of a two-dimensional perturbation of the fully developed one-dimensional 
waves. B & N  denotes values calculated by the method of Ba_tchelor & Nitsche; ASJ denotes results 
from the computational algorithm of the present paper. Lv denotes the wavelength of the fully 
developed one-dimensional wave, expressed as a multiple of the wavelength of the fastest growing 
small perturbation of the uniform bed (see figures 4c and 5c). In the last column it is indicated that 
the values of x ,  were determined only approximately in the present work, since the maximum of s, 
was quite flat. 

perturbations of the fully developed one-dimensional waves. Such a comparison is 
presented in table 4, from which it is seen that the growth rates calculated by the 
method of Batchelor & Nitsche are between one and a half and two times those 
computed in the present work. The wavelengths of the lateral perturbations which 
grow most rapidly, found from Batchelor & Nitsche, are somewhat longer than those 
determined in the present work, though no attempt was made to identify these with 
great precision. Note that the dimensional growth rates (given in brackets below their 
dimensionless counterparts) are of the same order of magnitude for the air- and water- 
fluidized beds, whether they are found as in Batchelor & Nitsche or from our 
computational algorithm. 

Exact agreement between our results and those of Batchelor & Nitsche should not 
be expected since sedimentation of the particles is not accounted for in their work 
(though it is included in a later paper (Batchelor 1993)), and the horizontal striations, 
which form the base states in our work, are not sinusoidal like theirs. Since we have 
computed solutions for only two isolated cases, not too much should be read into the 
figures quoted in table 4. However, they provide some support for the view that the 
Batchelor-Nitsche stability analysis provides a reasonable and easily calculated 
estimate of the time scale for the secondary instability. 

Dimensional analysis applied to the problem of Batchelor & Nitsche shows directly 
that there exists a functional relation of the form 

and solution of (18) permits this relation to be computed. If the dependence off on R' 
and v / D  were weak, then it would follow that the growth rate, y ,  would scale like 
(KgAp/p,)1'2, as recently speculated by E. J. Hinch (1994, personal communication). 
However, s, is found to be quite strongly dependent on R', so this simple scaling is not 
adequate. 

The secular equation for the problem of linear stability of the uniform fluidized bed 
can also be cast in dimensionless form, in various ways. For example, it can be shown 
that there exists a dimensionless functional relation of the form 

s, = f(L,-,?) c Cd v 
v v v  

where, as before, V, c, and cd are the velocities of the continuity wave and the upward 
and downward dynamic waves, v, is a velocity which depends on the kinematic 
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viscosity of the uniform bed, and s, is the growth rate of the fastest growing 
perturbation, in dimensionless form. s, and v, are defined as follows: 

where uTm is the dimensional growth rate for the fastest growing mode and C is a 
dimensionless factor given by 

Pf $0 c= 1+--. 
&1-$0 

The relation (23) can easily be computed, since the secular equation is merely a 
quadratic in this case, but s, is found to depend quite strongly on c,/ V and c d /  V, so 
no simple scale factor for the growth rate emerges. In this respect alternative methods 
of rendering the secular equation dimensionless appear to fare no better. 

We must conclude that simple explicit scalings for the growth rates of the primary, 
one-dimensional disturbance and the secondary two-dimensional instability of the 
equilibrated one-dimensional waves probably cannot be found. Nevertheless, the 
former can easily be estimated from the linear stability analysis of the uniform bed and 
there is an indication that the latter may be approximated from the Batchelor-Nitsche 
theory of stability of a striated fluid. The ratio of these time scales is important as it 
seems to play a significant role in determining whether or not bubbles appear in the 
bed. 

A second factor which seems to be important is the degree of asymmetry of the fully 
developed one-dimensional waves. As noted earlier, comparison of figures 4 (c) and 
5(c) reveals that the density profile for a fully developed wave in the air-fluidized bed 
is markedly asymmetric. The layer of low particle concentration is bounded below by 
a sharp interface, across which the solids volume fraction rises suddenly to about 0.61. 
In contrast, the upper boundary is diffuse, with the concentration rising to about 0.61 
over a distance of the same order as the width of the low-concentration layer itself. For 
the water-fluidized bed the asymmetry, though still present, is much less marked. This 
difference between the one-dimensional waves in the two beds is reflected in the 
eigenfunctions representing the fastest growing two-dimensional perturbations of these 
waves. Figure 10(a), which superposes the one-dimensional wave and a perturbation 
proportional to this eigenfunction, reveals a marked ‘buckling’ of the upper more 
diffuse boundary of the low-concentration layer, but very little buckling of the sharper 
lower boundary. In the initial stages of the subsequent motion it is seen from figure 
10(b) that the buckling of the upper boundary continues, while the lower boundary 
distorts very little. The effect of this is to generate a region of increasing size, within 
which the particle concentration is further reduced, and it is this region which then 
continues to grow into the bubble. Only in the later stages of growth (figure lOc, d )  
does the lower boundary of the layer of low concentration buckle and, even then, 
marked buckling is confined to those parts outside the bubble. 

For the water-fluidized bed figure 17(a) replaces figure lO(a), and here there is 
nothing like the same contrast between the appearance of the upper and lower 
boundaries of the layer of low concentration. As time passes both buckle at a 
comparable rate, with the upward bulge of the upper boundary matched by a similar 
upward bulge of the lower boundary. This can be seen in figure 17(b), which should 
be compared with figure 10(b, c). Though a small pocket of quite low concentration 
forms in the apex of this bulge (figure 17b), it is subsequently eliminated as the buckling 
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FIGURE 22. (a) Contour q5 = 0.4 from solids fraction distribution of figure lO(d). (6)  Outward 
normal component of flux velocity of particles through curve shown in (a). 

of the lower boundary causes the region of high density below to move up into it. As 
mentioned earlier, this is strongly reminiscent of a mechanism proposed by Davidson 
& Harrison (1963), though in our case the motion of the particles is everywhere 
downward in the rest frame of the incipient bubble; the region of high density ascends 
into the bubble because particles fall onto its upper surface faster than they can escape 
below. 

When a bubble in the air-fluidized bed is already well formed, as in figure lO(d), it 
is interesting to trace which features of the particle flow field are responsible for its 
continued emptying. To see this consider figure 22, which corresponds to a growing 
bubble in the air-fluidized bed at the stage represented by figure lO(d).  The closed curve 
in figure 22(a) is the contour q5 = 0.4 from figure lO(d), which we may arbitrarily 
choose to regard as the boundary of the bubble, and figure 22(b) then plots the 
outward normal component of the solids velocity (and hence the flux of solid material) 
as a function of position around this contour. Four corresponding pairs of points are 
labelled with the same letters to help in relating the two diagrams. It is seen that the 
solids flux out of the boundary at the floor (point C) is slightly larger than the flux in 
at the roof (point A). This difference, which is entirely responsible for growth in the 
case of the one-dimensional waves, has become quite small at this stage of development 
of the two-dimensional structure. More significant is the efflux of particles at points 
about midway between B and C, and between D and C, which is not balanced by the 
much smaller influx at points midway between B and A, and between D and A. 
Comparing this figure with figure lO(d), it is seen that these unbalanced outflows are 
located roughly where a dense region behind the bubble gives way to a band of smaller 
density, which is the (much distorted and attenuated) remnant of the original one- 
dimensional layer out of which the bubble grew. The lower surface of this layer is 
inclined steeply, and the effluxes near the points where it meets the bubble may simply 
reflect the fact that sedimentation of the particles through this layer offers an 
alternative to escape from the bubble by sedimentation through the denser wake 
directly below it. 

Recently Batchelor & Nitsche (1994) have explored the final stages of expulsion of 
particles from a bubble by computing trajectories of individual particles in interaction 
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with the circulating gas within the bubble. For particles of diameter 60 pm and smaller 
they found that the particles deviated from the gas streamlines as a result of centrifugal 
force, causing them to spiral outward and eventually leave the bubble. For 80pm 
particles (and presumably larger particles also), on the other hand, they found that 
particles exited the bubble by falling through its floor, so that is what we would expect 
in the case treated here. However, this cannot be verified from our computations, since 
these terminate when the bubble still contains more than 15 O/O solids by volume. 

For perturbations of the uniform bed which start with some two-dimensional 
structure the vital difference between the air- and water-fluidized beds lies in the 
relative time scales of the primary and secondary instabilities. In the air-fluidized case 
these are both of the same order of magnitude, so the primary instability has an 
opportunity to develop to a point where it has generated bands with significant 
contrast in particle concentration before it is overcome by the secondary instability. In 
the water-fluidized case, on the other hand, the time scale of the secondary instability 
is an order of magnitude faster than that of the primary instability. Consequently the 
secondary instability develops before the primary instability has had an opportunity 
to generate any significant contrast in particle concentration between adjacent bands. 
The primary instability is then overwhelmed and the structure of the developing bands 
is prematurely disrupted. 

Results have been presented here for only two beds (though a second, more 
expanded, water-fluidized bed has also been investigated (Anderson 1995)) so we are 
reluctant to draw general conclusions. However, the numerical solutions are in accord 
with a number of earlier approximate theoretical results and, in addition to providing 
some insight into the relation between instability and bubble growth, they do suggest 
some interesting questions to address in future work. The experimental distinction 
between bubbling and non-bubbling behaviour does not appear to be an absolute one, 
and computations should clearly be performed for some systems where the ratio of the 
solids and fluid densities is intermediate between the two cases studied here. There are 
long-standing reports of observations of behaviour lying between the two extremes 
in liquid-fluidized beds of large, very dense particles (Davidson & Harrison 1963) and 
these could be compared with corresponding solutions of the equations of motion. It 
is also well known that the tendency to bubble in gas-fluidized beds is reduced 
significantly as the pressure of the fluidizing gas is increased, and computations could 
be used to explore whether additional physics needs to be introduced into the equations 
of motion to explain this. The existence of apparently different mechanisms determining 
whether bubbles will grow from small perturbations, and whether existing incipient 
bubbles will survive, raises the question of whether there are systems in which injected 
bubbles can survive indefinitely, but bubbles will not grow from a uniform fluidized 
bed. Finally, the present computations have been limited to two-dimensional spatially 
periodic motions. Similar calculations should be performed for isolated disturbances, 
both two-dimensional and axially symmetric in three dimensions, to resolve questions 
about the mutual influence of neighbouring bubbles. 
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